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Abstract 

This study examines the relationship of structure 
precision, as expressed by the e.s.d.'s of atomic coor- 
dinates, to the R factor and chemical constitution of 
a given crystal structure. On the basis of the work of 
Cruickshank [Acta Cryst. (1960), 13, 744-777], it is 
shown that ~(C-C), the mean e.s.d, of a C-C bond 
length in a structure, or ~(C), the mean isotropic 
e.s.d, of a C atom, can be estimated by expressions 
of the form -~=kRN~c/2. Here, Arc is taken as 
XZ~/Z~, with the atomic numbers Zi summed over 
all atoms in the asymmetric unit and Zc = 6. It is 
also shown that ~(E), the mean isotropic e.s.d, of a 
non-C atom, can be estimated by -if(E) = kRN~c/2/Ze. 
Values of k were determined by regression analyses 
based on subsets of 25 984 and 20 334 entries in the 
Cambridge Structural Database (CSD) that contain 
atomic coordinate e.s.d.'s. 95% of coordinate e.s.d.'s 
for C atoms can be estimated to within 0.005/~ of 
their published value and 78% to within 0.0025/~. 
These predicted ~ values provide useful estimates of 
precision for those 39 000 structures for which coor- 
dinate e.s.d.'s are not available in the CSD. Details 
of the diffraction experiment, which might provide 
an improved estimating function in Cruickshank's 
(1960) treatment, are not available in any CSD 
entries. However, values of Nr (the number of reflec- 
tions) and Np (the number of parameters) used in 
refinement were added manually for 817 entries, and 
the variation of ~(C-C) with decreasing Nr/Np ratios 
is examined: there is a rapid increase in ~(C-C) as 
Nr/Np decreases below circa 6.0. A method for 
approximating £, the r.m.s, reciprocal radius for the 
reflections observed, is presented, but it is found that 
a function of the form ~(C-C)=kRN~/2/y(Nr - 
Np) 1/2 [directly analogous to Cruickshank's (1960) 
equation] had only slightly improved predictive 
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ability for this data set by comparison with functions 
based upon R and N2/2 alone. Possible reasons for 
this apparent anomaly are discussed. 

Introduction 

Systematic analyses of the earliest crystallographic 
results played a vital role in the development of 
theories of chemical bonding and in the study of 
hydrogen-bonded and nonbonded interactions (see 
e.g. Pauling, 1940; Pimentel & McClellan, 1960; 
Sutton, 1958, 1965). As the volume of available 
results began to grow dramatically during the late 
1960's and early 1970's (Fig. la), the number of 
systematic studies decreased, perhaps because of the 
difficulty of locating the appropriate results in the 
literature and the labour involved in retrieving, 
organizing and processing the large volume of associ- 
ated numerical data. Nowadays, the problems have 
largely been eliminated through the availability of 
crystallographic databases (see e.g. Allen, Bergerhoff 
& Sievers, 1987) that are fully retrospective and 
maintained on a current basis. These databases, 
together with improving software for search, retrie- 
val, analysis and display of the stored information, 
have provoked a renewed interest in the systematic 
study of crystal and molecular structures. As a result, 
the 1980's saw a steady flow of papers reporting 
systematic applications of the chemical and crystallo- 
graphic results stored in the Cambridge Structural 
Database (CSD; Allen et al., 1991). Indeed, a new 
component of the CSD System is designed to record 
these references (Allen, Kennard & Watson, 1995) 
and the preliminary statistics presented in Fig..l(b) 
show a sharp rise from a plateau of N 20 papers per 
year until 1988 to the 56 papers published in 1991. 

This growing interest in knowledge acquisition 
from numerical structural data, coupled with the 
continued growth in crystallographic output sum- 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1995 
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marized in Fig. l(a) and Table 1, presents its own 
problems in terms of  the selection of  CSD entries to 
be included in a given analysis. The primary selection 
will, of  course, be dictated by the aims and scope of  
each research project. Primary criteria are usually 
defined in terms of  the chemical substructure(s), 
both intramolecular and intermolecular, for which 
systematic knowledge is required. In most cases, 
however, we must also consider a variety of  second- 
ary (or general) selection criteria through which we 
may (a) restrict the volume of  data arising from a 
particular primary search or, more commonly, (b) 
ensure that we can have statistical confidence in the 
numerical results of  any systematic analysis. In both 
(a) and (b), we are using secondary criteria to select 
the 'best' entries for inclusion in the analysis, where 
'best' is essentially defined in terms of the likely 
precision of  the relevant atomic coordinate data. 
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Fig. 1. Retrospective overview of  the Cambridge Structural 

Database: (a) growth of  the C S D  by publication year; 
(b) growth in number of  research papers using the CSD as basis; 
(c) improvements in structural precision as measured by the 
mean R factor in each publication year. 

Table 1. Summary statistics for the January 1992 
release of the CSD 

Number of entries 96731 
Number of chemical compounds 86012 
Number of entries with three-dimensional coordinates 84598 
Number of error-free three-dimensional coordinate sets 82828 
Number of atoms with three-dimensional coordinates 4368677 
X-ray studies 95966 
Neutron studies 765 
Absolute configuration by X-ray methods 2499 
Low-temperature studies 9672 
Number of literature sources 613 

Table 2. Secondary criteria often used in selecting 
CSD entries for inclusion in systematic analyses 

The percentage of entries that would pass each individual test is 
indicated where relevant. 

Entry is error-free in CSD checks (98%) 
No disorder in crystal structure (89%) 
Neutron study (0.8%) 
Organic structure (CSD classses 1~5 or 70) (57%) 
Metallo-organic structure (CSD classes 66-69, 71-86) (43%) 
Limitations on: 

Maximum atomic number 
CSD chemical classes 
Number of coordinates in entry 
Year of publication 
Temperature of data collection 
Crystallographic R factor 
Mean e.s.d, of a C - C  bond [-If(C-C)] flagged as: 

AS = 0 for ~(C--C) not available 
AS = 1 for 0.0 < ~ (C-C)  _< 0.005 
AS = 2 for 0.005 < ~ (C-C)  _< 0.010 
AS = 3 for 0.010 < "If(C-C) _ 0.030 
AS = 4 for 0.030 < ~ (C-C)  

A number of  information items in the CSD that 
are frequently used as secondary search criteria are 
listed in Table 2. Thus, we should normally exclude 
entries containing residual coordinate errors and 
may choose to treat disordered structures in the same 
way. In studies involving light-atom (e.g. C-, N- or 
O-atom) geometry, it is common to place some limit 
on the atomic number(s) of  other elements that may 
also be present in retrieved structures: this limitation 
is effected in a more general way by restricting the 
search to organic structures only. If H-atom- 
coordinate precision is important, then neutron 
structures only may be used, provided that sufficient 
data are available (see e.g. Taylor & Kennard, 1982). 
Even the use of some cut-off value for year of  
publication is related, albeit obliquely, to coordinate 
precision: Fig. l(c) shows how mean R factors have 
fallen from circa 0.09 in 1970 to circa 0.05 in recent 
years. Thus, the use of  some of  the criteria in Table 2 
depends very much upon a qualitative, even intuitive, 
experiential knowledge of  their likely effects on coor- 
dinate precision. 

Only the crystallographic R factor (recorded in the 
database as the lowest of  R, Rw etc) and the AS flag, 
defined in Table 2, can be regarded as true indicators 
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of structural precision in the CSD since both arise 
from the least-squares fit of the structural model to 
the measured diffraction data. The R factor, despite 
its statistical imperfections, is ubiquitous in the crys- 
tallographic literature and less than 1% of CSD 
entries for which coordinates are available lack an 
R-factor field. The AS flag has been included in the 
CSD since its inception, but its comprehensive 
availability is less satisfactory: 16% of entries lack 
this flag (see Table 5). Until 1985, the AS flag was 
assigned by CSD editorial staff on the basis of 
published C-C bond-length e.s.d.'s (occasionally for 
C-N or C-O values if C-C bonds were not present). 
Thus, even if atomic coordinate e.s.d.'s were availa- 
ble in the publication, but bond length e.s.d.'s were 
not, then AS remained unassigned. Further, AS is a 
discontinuous parameter for which the banding, 
although appropriate for structures determined in 
the late 1960's and early 1970's, is no longer suitable 
for the results of the late 1980's and early 1990's. In 
particular, the e.s.d, band 0.011--0.030/k (AS = 3) is 
too broad and subsumes many organic stuctures 
with ~(C-C) in the range 0.011-0.015 A that might 
be considered sufficiently precise for inclusion in 
many systematic studies. 

A more fundamental objection to the AS flag is 
that it concentrates entirely on C atoms and, even 
then, conveys no explicit information concerning the 
precision of any given C atom or of any geometrical 
parameters involving that atom. Information of this 
kind is essential if we are to calculate weighted 
means in geometrical studies. The best that can be 
done at present is (a) to use the AS values to 
generate a 'semi-weighted mean', as suggested by 
Taylor & Kennard (1983), or (b) to generate 
unweighted means using subsets of CSD entries in 
which geometrical precision is likely to fall within 
relatively narrow limits, e.g. entries with, say, R _< 
0.070 and AS = 1 or 2. 

For all of these reasons, it was decided to incorpo- 
rate individual atomic coordinate e.s.d.'s into the 
CSD, beginning with entries from the 1985 literature. 
The AS flag has continued but is now assigned 
automatically using the stored e.s.d.'s. Further, by 
including the reported e.s.d.'s of invidual bond 
lengths in raw input to CSD check procedures, it is 
also possible to perform some numerical consistency 
checks on the keyboarded e.s.d, data. 

The inclusion of coordinate e.s.d.'s is a significant 
improvement in CSD information content, an 
improvement that will be made available in CSD 
System software in the near future. However, this 
new addition does introduce a discontinuity in the 
CSD: the addition of any new information field at 
some point in time automatically creates a backlog 
of nonupgraded entries equal to the number of 
entries that existed prior to the upgrade! In this case, 

the backlog amounts to 50000 entries and a fully 
retrospective upgrade is unlikely to be effected within 
current CSD work schedules. Thus, the CSD still 
lacks a single indicator of structural precision that 
can be included for all entries and can be represented 
as a continuous real-valued numerical variable: for 
example, the real ~(C-C) or the real mean e.s.d, of a 
C-atom position [~(C)]. Further, it is still impossible 
to obtain reasonable estimates of weighted means for 
geometrical parameters calculated across a full range 
of CSD entries. 

However, the CSD now contains a large number 
of entries (45 763, 44%) for which coordinate e.s.d. 
data are available and for which the problems noted 
above do not apply. In this paper, the available e.s.d. 
data are used to examine the possibility that we can 
predict reasonable values of ~(C-C), and hence of 
~(C), using some function of variables (X ,Y ,Z ,  ...) 
that do exist in the vast majority of CSD entries, i.e. 

~(C---C)p "-'-" 21/2~(C)p "-'fp(X, Y,Z,...), (1) 

where fp is some predictive function and the factor of 
21/2 arises from the r.m.s, treatment of pairs of equal 
and spherical error distributions, ~(C), in any struc- 
ture. If a suitable function can be found, such that 
~(C-C)p compares favourably with the observed 
~(C-C)o calculated directly from the stored tr(C) 
values, then ~(C-C)p can be used as the continuous 
real-valued indicator of structural precision envis- 
aged earlier. The value of ~(C-C)p would sup- 
plement the ~(C-C)o values embodied in AS flags for 
pre-1985 entries and even encompass those entries 
for which an AS flag is not available. A preliminary 
study of this kind, reported by Allen & Doyle (1987) 
and based on 4817 entries containing coordinate 
e.s.d.'s, showed the feasibility of the approach. We 
now report a more comprehensive study based on 
35 747 entries containing coordinate e.s.d.'s. 

Factors affecting stuctural precision 

The theoretical background to this work is provided 
by Cruickshank (1960), who analysed the precision 
of X-ray intensity data that is required to yield a 
mean isotropic coordinate e.s.d., ~(A), for any 
element A in a structure that may also contain other 
elements B, C etc. In particular, he derived a simple 
approximate formula that related ~(A) to the resid- 
ual (R), the chemical consitution of the asymmetric 
unit and limiting values from the data-collection 
experiment; thus, 

-~(A) = R(NA)I/Z/Y(mp) 1/2, (2) 

where Y is the r.m.s, reciprocal radius for the reflec- 
tions observed and p is the difference between the 
number of independent reflections (Nr) and the 
number of parameters determined (Np). The param- 
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eter NA is the number of atoms similar to A that are 
required to give a scattering power at ~-that is equal 
to the scattering power of the N atoms of the asym- REFCOD 
metic unit of the structure, i.e. g 

N AS 

Z f z= Nafa 2 (3) r 
• Noh i=1 

Nh 
SPGN 

Table 3• Definition of  data items included for each 
entry in the work files generated for data sets 2 and 3 

The factor m in (2) is 4 for noncentrosymmetric 
space groups and 8 for centrosymmetric space CENT 
groups (Cruickshank, 1960). v 

Because values of g are not available in the CSD Z~.x 
and this study concentrates primarily on carbon, our z ...... 
best estimate of Nc (the 'equivalent number of C 
atoms') is given by: N,,2 

N 

N< = Z Zi~lZ~• (4) 
i=1 

Here, the Zi are atomic numbers, the denominator 
Z~ is 36 and we must assume that all of the diffrac- 
tion experiments were carried out with similar r.m.s. 
reciprocal radii for the observed reflections• Equa- 
tion (2), then, predicts that V(C) and ~(C-C) will 
decrease with decreasing R but will increase as the 
proportion and size of heavier atoms (Z; >> 6) in the 
structure increases. Equation (2) also predicts that 
V(C) and V(C-C) will be inversely proportional to 
pilE and to g; we return to this topic later in the 
paper. We concentrate initially on relationships 
between V(C) and V(C-C), the R factor and func- 
tions that involve the atomic numbers of the consti- 
tuent elements of the structure. 

Methodology 
The January 1992 release of the CSD (see Table 1) 
was used throughout this analysis. Three subsets of 
CSD entries, hereinafter referred to as data sets 1, 2 
and 3, were retrieved using both local code and the 
program QUEST (Cambridge Structural Database 
User's Manual, 1992). 

Data set 1 
.. 

This  comprised the 83 516 entries for which atomic 
coordinates were available that have been published 
since 1965. This data set was used for a preliminary 
survey of the inter-relationship between AS values, R 
factors and Zm~x (the maximum atomic number of 
any atom in each crystal structure). 

Data set 2 

This comprised the 35 747 entries for which atomic 
coordinate e.s.d.'s were available and that also satis- 
fied the additional criteria: (a) the structure was 
determined by X-ray (not neutron) diffraction; (b) 
intensity data were collected on a diffractometer; (c) 
no residual numerical errors remained after CSD 

~max 
~r.m.s. 
RN¢ 1/2 

~(c-c) 
~r(C-C)~. 
cr(c--c)~ 
~(c) 

N~ 
N, 
U. 

N,/N. 

CSD reference code 
Crystallographic R factor 
CSD AS flag defined in Table 2 
Temperature of data collection (K) 
Number of non-H atoms in asymmetric unit 
Number of H atoms with coordinates reported 
Space-group number (International Tables for X-ray 

Crystallography, 1960) 
Noncentrosymmetric = 1, centrosymmetric = 2 
Unit-cell volume 
Atomic number of heaviest element in structure 

{ ~ Z~/36N"h} ~n' Z'are at°mic 

,,. 1,,2 
,ZIZ?/361 , Zi are atomic numbers 

The product RZm~ 
The product RZ ...... 
The product RNc ~n 
Mean calculated e.s.d, of C--C bond lengths 
Minimum calculated e.s.d, of a C--C bond length 
Maximum calculated e.s.d, of a C--C bond length 
Mean isotropic e.s.d, of C atoms 
Mean isotropic e.s.d, of heaviest element(s) 
Number of C--C bonds contributing to ~(C--C)< 
Number of independent reflections (data set 3 only) 
Number of parameters refined by least squares 

(data set 3 only) 
Ratio of N, to Np 

checking and evaluation procedures; (d) no disorder 
or polymeric (catena) bonding was reported; and (e) 
the R factor was less than 0.100. A work file was 
generated from this data set (see below) and formed 
the basis for the derivation of predictive functions, fp, 
indicated in (1). 

Data set 3 

This comprised a small subset of 817 entries from 
data set 2 for which values of Nr (number of 
independent reflections) and Np (number of param- 
eters refined in the least-squares process) were 
abstracted from the original literature and added to 
the work file. This data set was used in attempts to 
improve the predictive function obtained from data 
set 2. 

Generation of  work file from data sets 2 and 3 

The extensive binary CSD records for data set 2 
were converted to a simple formatted ASCII work 
file using local software. The work file consisted of a 
single record for each entry that contained the 
information items of Table 3. These items were 
chosen as being related, directly or indirectly, to the 
precision of the coordinate set. For the small subset 
referred to as data set 3, values of Nr and Np were 
initially abstracted from Acta Crystallographica 
Section C. However, owing to the high proportion of 
organic structures published there, the selection was 
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balanced by Nr and Np values abstracted from papers 
published in Inorganic Chemistry and Organo- 
metallics. The chemical composition of data set 3 
was comparable with that of the larger data sets. 

Obviously, since the CSD does not record details 
of the parameter variance matrix arising from least- 
squares-refinement procedures, analytical approxi- 
mations were used to compute values for ~(C), P(E), 
~(C--C), or(C----f)min and o-(C---C)max defined in Table 
3. Muir & Mallinson (1993) have recently published 
a cautionary reminder of the hazards of applying 
simple analytical equations in oblique coordinate 
systems. In this work, we have essentially employed 
their method (2) to make allowance for the lack of 
variance information. Fractional coordinates x were 
first transformed to orthogonal values X via X = flrx 
[Dunitz, 1979, equation (5.30)]. Standard deviations 
of the orthogonal coordinates tr(X) were obtained as 
the square roots of the diagonal elements of S = 
fl'rAfl, where ~ is a symmetrical 3 x 3 variance 
matrix for the fractional coordinates having a ,  = 
trZ(xi), a , j=  tr(xi)o'(xj)rij. Here, the correlation co- 
efficients r,j are taken as the cosines of the reciprocal- 
cell angles (rlE=COSy *, rla=COSfl *, rEa=cosa  *) 
following the analysis of Templeton (1959). 
Variances in the cell parameters are ignored in our 
procedures. 

For any atom A, we then compute an isotropic 
equivalent standard deviation tr(A) as the r.m.s. 
average of tr(X), tr(Y), tr(Z) arising from the treat- 
ment described above. Only the nonzero axial com- 
ponents were included in this averaging for atoms on 
special positions. The quantities ~(C) and ~(E) of 
Table 3 are then the mean isotropic equivalent stand- 
ard deviations taken over all instances of carbon (C) 
and the heaviest element (E) in the structure, respec- 
tively. The e.s.d, of a bond length d between atoms A 
and B was calculated as 

~(A-B) = {[~2(X)A + ,~2(X)B](aX/d) 2 

+ [o-~(~A + ~(Y)B] (a  Y/d) ~ 

+ [~2 (zL  + ~2(z)~](az/dy}lJ~.  (5) 

For isotropic errors in X, Y, Z, this value is approxi- 
mated by 

~r(A-B) = [~r2(Ai + o-Z(B)] '/2 (6) 

and, for A = B = carbon, we have 

~r(C-C) = 2 ~/2 ~r(C). (7) 

Thus, for any structure we might expect that the 
ratio ~ (C-C) /~(C)  would be close to 2 ~/2. In fact, 
this ratio is 1.377, averaged across the very large 
variety of structures contained in data set 2 (see 
Table 6). 

A number of additional checks were included in 
the software for work-file generation in an attempt 

(a) to improve the validity of the statistical analysis 
of work-file entries and (b) to guard against possible 
numerical errors in the coordinate e.s.d.'s entered in 
the CSD: these data, particularly in the early years of 
entry, were subject to limited scrutiny. All entries 
failing tests (iii) and (iv) below were omitted from the 
work files and will be further examined by CSD staff. 
The criteria applied were: 

(i) The number of C-C  bonds (Nb, Table 3) used 
to generate ~ (C-C)  must be >_ 5. 

(ii) The distribution of the individual bond-length 
e.s.d.'s, ~r(C-C)i (i = 1-Nb) was examined for each 
entry. The sample standard deviation 

S = [o-(C-C)i-  ~(C--C)]2/Nb - 1 (8) 
t i=l  

was calculated and ~r(C-C)i were eliminated if 
[~(C-C) - ~r(C-C)~] > 4S, Nb was decreased accord- 
ingly and, if Nb was still _> 5, ~ (C-C)  was recalcu- 
lated for the work-file entry. 

(iii) Entries with highly skewed distributions of 
~r(C-C); were eliminated by calculating 

M = [o'(C-C)max + o'(C-C)min]/2, (9) 

as an approximation of the median value, and then 
comparing M with the actual ~ (C-C)  value via 

D~. = - M I ] ~ ( c - c ) .  ( l o )  

Entries with D,~ > 0.25 were rejected. 
(iv) In a few cases, it was found that coordinate 

e.s.d.'s in the CSD were larger or smaller than 
reported values by a factor of 10 (integer e.s.d.'s in 
keyboarded input entered with an erroneous power 
of 10). These instances are internally consistent and 
pass tests (ii) and (iii). They were eliminated (a) when 
~(C-C)  > 0.04/~, or (b) when the AS flag calculated 
from the stored e.s.d.'s did not agree with that 
recorded in the CSD, within a tolerance of 0.001/k 
for AS = 1, 2 and 0.002 A, for AS = 3, 4. 

Tests (i)-(iv) are stringent and may have 
eliminated some valid entries. However, they do 
guarantee that erroneous e.s.d, data are rejected and 
could form a basis for improved checking during 
future database building operations. As a result of 
these tests, the work file denoted as data set 2 was 
reduced to 29 362 entries, which were used in subse- 
quent analyses. 

Analysis of data sets 1, 2 and 3 

Data sets 1 and 2 were both used to generate the 
simple descriptive statistics presented below. Data  
sets 2 and 3 were then further analysed using (a) 
correlation analysis to examine the interdependence 
of parameters in each work file; (b) simple linear 
regressions of the general form ~(C-C)p = a + b(fp), 
where fp [(1)] is analogous to the expression of 
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Cruickshank (1960); (c) multiple linear regressions of 
the general form ~(C-C)p = a + bL  + c M  + ..., where 
L, M etc. are individual data items held in the 
respective work files. All calculations were carried 
out using local software that incorporated calls to 
appropriate statistical routines from the CAMAL 
library (Taylor, 1986) or from the NAG library 
(Numerical Algorithms Group, 1990). Computations 
were carried out on a stand-alone DEC/VAX 3300 
and on a VAX cluster in the Department of Chemis- 
try, University of Durham, and on an IBM 3084Q at 
the University of Cambridge Computer Laboratory. 

Terminology 

The  mean values of parameters that can vary 
within a single structure are denoted thoughout by 
~(C-C), ~(C), ~(E) etc. Mean values of parameters 
taken over many structures are denoted by 
( ~ ( X -  X)), (R), (Zmax) etc. 

entries that will survive secondary search criteria 
based on various R and AS limits. 

The data set 2 work file permits us to move from 
the rather crude AS measure of coordinate precision 
to the more exact ~(C) and ~(C-C) values calculated 
from the coordinate e.s.d.'s stored in the CSD. Fig. 4 
shows distributions of ~(C-C) for all structures (Fig. 
4a) and for the light-atom (Fig. 4b) and heavy-atom 
(Fig. 4c) subdivisions that show the same functional 
form as the AS distributions of Fig. 3. The overall 
mean (~(C-C)) for 26 529 entries from data set 2 
that pass all criteria noted earlier is 0.0103/~. How- 
ever, (~(C-C))for the light-atom structures (Zmax--< 
18) is 0.0068 A, almost exactly half of the (~(C-C)) 
of 0.0134/~ exhibited by the heavy-atom (Zmax > 18) 
structures. Again, the effect of increasing Zmax on 
~(C-C) is further illustrated by the results of data set 
2 that are included in Table 4. The distributions of 
Fig. 4 are also clear visual proof of the inappropriate 

Results and discussion 

Descriptive stat&tics f o r  data sets 1 and 2 

Descriptive statistics for the complete database are 
not only relevant to our overall analysis but are also 
of intrinsic crystallographic interest. Figs. 2 and 3 
show the distributions of R (Fig.2) and the AS flag 
(Fig. 3) for, in each case: (a) all structures; (b) 
light-atom structures (Zmax-< 18); (c) heavy-atom 
structures (Zmax > 18). Fig. 2 shows that the overall 
mean (R) for heavy-atom structures is slightly lower 
(0.055) than that for light-atom structures (0.060). 
However, Fig. 3 shows that the AS flag, taken as a 
rough measure of V(C) or V(C-C), is considerably 
affected by increasing Zma~. The overall mean (AS} is 
2.27 over all structures (Fig. 3a) but falls to 1.90 for 
the light-atom structures (Fig. 3b) and rises to 2.53 
for the heavy-atom structures (Fig. 3c), despite the 
lower overall (R) exhibited by the latter category. 
This proportionality between -Y(C) and increasing 
atomic numbers implicit in (2) is further quantified in 
Table 4, in which (AS} increases systematically over 
five ranges of Zmax. 

Table 5 illustrates the expected relationship 
between AS and R, in which the CSD chemical-class 
system is used to mimic the Zmax divisions of Figs. 2 
and 3. Table 5(a) shows that (AS} increases smoothly 
from 1.73 to 3.21 as (R) increases from 0.025 to 
0.125. This relationship is also observed for the 
light-atom structures (Table 5b) and heavy-atom 
structures (Table 5c), but the general level of (AS} 
values of Table 5(b) is significantly lower than that 
for Table 5(c), as expected from the results of Table 
4. Table 5 is given in full, since it allows a rapid 
visual assessment of typical percentages of CSD 
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Fig. 2. Distributions of R factors in data set 1: (a) all structures; 

(b) light-atom structures (Zmax----- 18); (C) heavy-atom structures 
(Zma x > 18). 
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banding of the current AS flags for the classification 
of V(C-C) values obtained in modern structure 
determinations; this is especially true for light-atom 
structures. 

The overall relationship between V(C-C), R and 
Zmax is explored in Fig. 5. To generate Fig. 5(a), data 
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Fig. 3. Distr ibutions of  AS flags in data  set 1: (a) all structures; 

(b) l ight-atom structures ( Z m ~ , -  18); (C) heavy-a tom structures 
( Z m a  x ~" 18). 

Table 4. Distribution of the AS flag (data set 1) and of 
~(C-C) (data set 2)for ranges of Z~ax 

Non, is the number  o f  entries in a range and (AS), (R), (Zm,,) and 
(~ (C-C) )  are mean values for that  range. The AS distr ibution is 
qualified by values in parentheses that are percentages o f  the total 
number  of  entries in data  set 1. For  da ta  set 2, results are quoted  
for entries that pass all criteria described in the text. 

Z ~ x  range 
(1) 6-10 (2) 11-18 (3) 19-36 (4) 37-57 (5) ___58 

Data set 1 
Non, 20137 28091 21777 8001 5510 
(R) 0.059 0.056 0.060 0.053 0.051 
( Z ~ )  7.84 15.99 28.68 46.46 76.50 
(AS) 1.71 2.28 2.47 2.61 3.06 
AS = 0 2697 (3) 4608 (6) 3664 (4) 1221 (1) 859 (1) 
AS = 1 8212 (10) 5243 (6) 2563 (3) 656 (1) 104 (-) 
AS = 2 6335 (8) 8276 (10) 6223 (7) 2143 (3) 708 (1) 
AS = 3 2700 (3) 8200 (10) 7614 (9) 3160 (4) 2639 (3) 
AS = 4 193 (-) 1764 (2) 1713 (2) 821 (1) 1200 (1) 

Data set 2 
Ne.t 7831 4627 6005 4581 3485 
(R) 0.052 0.051 0.050 0.044 0.042 
(Zma~) 7.88 15.94 28.35 46.00 76.15 
(-G(C-C)) 0.0064 0.0076 0.0112 0.0127 0.0180 

set 2 was divided into the five ranges of Zma x identi- 
fied in Table 4. Then, for each /max range, the mean 
value (V(C-C)) was determined for each of five 
R-factor ranges: 0.001-0.035, 0.036-0.045, 
0.046-0.055, 0.056-0.070 and 0.071-0.100. The 
(V(C-C)) values were then plotted against (R) for 
each of the /max ranges to generate Fig. 5(a). The 25 
'bins' used in this procedure ranged in size from 433 
to 2251 entries except for the highest-R-factor bins of 
/max ranges (4) and (5), which contained only 300 
and 141 entries, respectively. Within any/max range, 
the mean, (Zrnax), is virtually identical for each of its 
five R-factor bins. Thus, Fig. 5(a) shows a clear 
linear relationship between the (~(C-C)) and 
increasing (R) in each (effectively constant) /max 
range (full lines) and a similar linear increase in 
(~(C-C)) with increasing (Zmax) at an effectively 
constant R factor (dotted lines). Despite some 
disparities in the bin sizes, the results of Fig. 5(a) are 
in clear agreement with the predictions of Cru- 
ickshank (1960). 

Finally, in Fig. 5(b), we explore composite rela- 
tionships of the form ~(C-C) = kRf(Z) as suggested 
by (2), in which f(Z) is taken as (see Table 3): (i) 
Zmax; (ii) Zr.m.s.; (iii) N 1/2 evaluated with (4). Since it 
is impractical to plot -30000  points for each rela- 
tionship, a simple binning process has been applied 
so as to visualize the subset of data set 2 denoted 
S140 in Table 6. The 25 984 entries were divided into 
eight equal 3248-entry bins for each of R Z m a x ,  

RZr.m.s. and RN~/2 by the use of sorted lists. Mean 
values of (Rf(Z)) and (~(C-C)) were calculated for 
each bin to generate the three eight-point plots that 
are superimposed as Fig. 5(b). It can be seen that all 
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Table 5. Distributions of the AS flag (Table 2) versus R factor for CSD entries having coordinates that have 
been published since 1965 (data set 1) 

Non, is the number  o f  entries in a given R-factor range, (R) is the mean of  the available (R > 0.0) R factors, (AS) is the mean (see text) o f  
the available nonzero AS flags. Integers (___ 1) in parentheses are percentages of  the total  number  of  entries in each subdivision. 

R range Ncnt (R) AS = 0 AS = 1 AS = 2 AS = 3 AS = 4 (AS) 

(a) All entries (83 516) 

Unknown 581 (1) 261 73 95 117 35 2.36 
0.001-0.030 5832 (7) 0.025 667 (1) 2228 (3) 2123 (3) 773 (1) 41 1.73 
0.031-0.040 14725 (17) 0.035 1602 (2) 5028 (6) 4869 (6) 3016 (4) 210 1.88 
0.041-0.050 18268 (22) 0.045 2249 (3) 5191 (6) 5806 (7) 4475 (5) 547 (1) 2.02 
0.051-0.060 14650 (17) 0.054 2034 (2) 2556 (3) 4695 (6) 4592 (6) 773 (1) 2.28 
0.061-0.070 10267 (12) 0.064 1599 (2) 1023 (1) 2937 (4) 3866 (5) 842 (1) 2.52 
0.071-0.080 6721 (8) 0.074 1232 (2) 392 1572 (2) 2720 (3) 805 (1) 2.71 
0.081-0.100 7174 (8) 0.088 1548 (2) 213 1208 (1) 3028 (4) 1177 (1) 2.91 
_> 0.100 5298 (6) 0.125 1857 (2) 74 380 1726 (2) 1261 (2) 3.21 
Totals 82935 (99) 0.057 13049 (16) 16778 (20) 23685 (28) 24313 (29) 5691 (7) 2.27 

(b) 'Organic'  structures: CSD classes 1-59 (34 992) 

Unknown 301 (1) 119 60 59 54 9 2.07 
0.001-0.030 1334 (4) 0.025 199 (1) 751 (2) 286 (1) 90 8 1.43 
0.031-0.040 5317 (15) 0.035 571 (2) 3167 (9) 1259 (4) 284 (1) 36 1.41 
0.041-0.050 8110 (23) 0.045 898 (3) 3986 (11) 2501 (7) 670 (2) 55 1.55 
0.051-0.060 6474 (19) 0.054 795 (2) 2081 (6) 2549 (7) 967 (3) 82 1.83 
0.061-0.070 4484 (13) 0.064 620 (2) 832 (2) 1814 (5) 1129 (3) 89 2.12 
0.071-0.080 2946 (8) 0.074 502 (1) 305 (1) 1062 (3) 986 (3) 91 2.35 
0.081-0.100 3338 (10) 0.088 682 (2) 173 (-) 869 (3) 1389 (4) 225 (1) 2.63 
-> 0.101 2688 (8) 0.125 999 (3) 50 (-) 285 (1) 946 (3) 408 (1) 3.01 
Totals 34691 (99) 0.060 5385 (15) 11405 (33) 10684 (31) 6515 (19) 1003 (2) 1.90 

(c) 'Metallo-organic '  structures: CSD classes 60-86 (48 524) 

Unknown 280 (1) 142 13 36 63 26 2.73 
0.001-0.030 4498 (9) 0.025 468 (1) 1477 (3) 1837 (4) 683 (1) 33 1.82 
0.031-0.040 9408 (19) 0.035 1031 (2) 1861 (4) 3610 (7) 2732 (6) 174 2.14 
0.041-0.050 10158 (21) 0.045 1351 (3) 1205 (3) 3305 (7) 3805 (8) 492 (1) 2.40 
0.051-0.060 8176 (17) 0.054 1239 (3) 475 (1) 2146 (4) 3625 (7) 691 (1) 2.65 
0.061-0.070 5783 (12) 0.064 979 (2) 191 1123 (2) 2737 (6) 753 (2) 2.84 
0.071-0.080 3775 (8) 0.074 730 (2) 87 510 (1) 1734 (4) 714 (2) 3.00 
0.081-0.100 3836 (8) 0.088 866 (2) 40 339 (!) 1639 (3) 952 (2) 3.18 
_> 0.101 2610 (5) 0.124 858 (2) -24 95 780 (2) 853 (2) 3.40 
Totals 48244 (99) 0.055 7664 (16) 5273 (11) 13001 (27) 17798 (37) 4688 (10) 2.53 

three composite functions are reasonably linear 
in ~(C-C). However, the RN 1/2 function of 
Cruickshank (1960) appears to generate the 'best' 
straight-line fit, and one that passes close to the 
origin, in agreement with (2). 

Correlation analysis of data set 2 

The full symmetric correlation matrix for all of the 
numerical data items of Table 3 was calculated from 
the data set 2 work file. The calculation was carried 
out for two subsets (denoted S140 and $220) of the 
complete data set using the ~(C-C) and R-factor 
limits given in Table 6(a). Correlation coefficients 
Cu, linking R and ~(C-C) with the most relevant 
data items, are given in Table 6(b). 

Many of the Cu's simply provide a numerical 
confirmation of the observations made in the pre- 
vious section. Thus, R is positively correlated with 
AS and with ~(E), ~(C) and ~(C-C) and is 
negatively correlated with functions derived from the 
atomic numbers of the constituent elements. The 

correlations of R and of V(C-C) with T, the tem- 
perature of data collection, are close to zero, a 
reflection of the total domination of the data set by 
room-temperature studies. V(C-C) is positively cor- 
related with Nnh, the number of independent non-H 
atoms, and with V, the unit-cell volume. However, R 
and Zmax are also positively correlated with these 
quantities. It is not possible to locate further 
independent parameters from the wide selection in 
Table 3 that can validly be included in regression 
experiments. What is important in Table 6 is the high 
level of correlation between V(C--C) and the 
Cruickshank-like functions RZmax, RZr.m.s. and 
RN~/2. 

Prelim&ary regression analys& of data set 2 

The 11 simple and multiple linear regressions 
carried out on subsets S140 and $220 of data set 2 
(see Table 6a) are enumerated and defined in Table 
7(a). The simple linear regressions of type 1 have the 
functional form [(2)] proposed by Cruickshank 
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(1960), with an assumed constancy of his denomina- 
tor across all structures. If we define ~(C-C), calcu- 
lated from published coordinate e.s.d.'s, as the 
'observed' value (~o) and that 'predicted' by any 
regression equation as Up, then there are many ways 
in which the two distributions may be compared. 
The quantities chosen for use in this study are 
defined in Table 7(b) and include calculations of the 
ability of each regression to predict the current AS 
flag stored in each CSD entry. 

The main numerical results of the regression 
analyses are presented in Table 8(a) for the 25984 
entries of subset S140 and in Table 8(b) for the 
20 334 entries of subset $220; at this stage, no dis- 
tinction is made between centrosymmetric and non- 
centrosymmetric structures. Both sets of results show 
that regressions 1.1 and 2.1 based only on the R 
factor are significantly inferior to those that involve 
some function of the atomic numbers Z;. It remains, 
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then, to make a choice for that function between 
Zmax, Zr.m.s. and the N 1/2 suggested by Cruickshank 
(1960), and also between the various forms of the 
regression equations [(1), (2) or (3): Table 7(b)]. 

In all cases, the introduction of Zmax (the simplest 
function of the Z;) results in a significant improve- 
ment over the use of R alone. However, there is no 
doubt that the assessment criteria are all further 
improved by the use of Zr.m.s. or N~/2 functions that 
take account of all of the Zi rather than the simple 
maximum. The choice between Zr.m.s. and N~/2 is, 
perhaps, a little more subjective. However, for the 
larger subset S140, 20 of the 30 assessment criteria 
from the three types of equations are improved by 
the use of N~/2, while, for subset $220, 18 are 
improved. There appears to be no valid statistical 
reason to choose Zr.m.s. in preference to the N~c/2 
values. 

The original Cruickshank (1960) expression [(2)] 
has the form of a straight line passing through the 
origin: a type 1 regression in our analysis. The results 
of Table 8 for both subsets show that the assessment 
criteria are not significantly improved (and are some- 
times marginally worsened) by the introduction of 
additional degrees of freedom in regressions of types 
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Table 6. Correlation analysis of data set 2 

Data items and their names are as defined in Table 3. Two subsets 
o f  entries, denoted S140 and $220, were chosen for analysis on the 
basis o f  ~ ( C - C )  and  R - f a c t o r  limits. The C o are correlation 
coefficients selected from the complete matrix for each subset. 

(a) Subset definition 
Subset name S140 $220 
.f(C--C) minimum (A) 0.001 0.002 
.f(C--C) maximum (A) 0.040 0.020 
R minimum 0.001 0.001 
R maximum 0.100 0.070 
No. of  entries 25984 20334 
~.f(C-C)/.f(C)) 1.377 1.377 

(b) Correlation coefficients 
Item i Item j C o C e 

R AS 0.359 0.214 
R T 0.051 0.050 
R N.h 0.166 0.092 
R Nh 0.022 0.038 
R V 0.132 0.063 
R Z ~  - 0.227 - 0.337 
R Z, ..... - 0.229 - 0.343 
R Arc ~2 -0 .114  -0 .232  
R .f(E) 0.113 0.361 
R .f(C) 0.369 0.221 

.f(C-C) R 0.363 0.214 

.f(C-C) AS 0.851 0.888 

.f(C-C) T 0.044 0.045 

.f(C-C) N,h 0.338 0.303 

.f(C-C) Nb - 0.030 0.026 

.f(C-C) V 0.351 0.303 
~(C-C)  Z ~  0.525 0.520 
.f(C-C) Z~ ..... 0.529 0.505 
~(C-C)  N¢ 'a 0.584 0.558 
.f(C-C) R Z ~  0.700 0.646 
.f(C--C) R Z  ...... 0.737 0.657 
.f(C-C) RN~ la 0.729 0.657 
.f(C-C) ~(E) 0.031 0.035 
.f(C-C) .f(C) 0.985 0.978 

Table 7. Regression analysis summary for data set 2 

(a) Enumeration and definition of  the simple linear and multiple 
linear regressions performed on data set 2 

Regression no. (RN) Functional form 

1. Simple linear, no constant 
1. l V ( C - C ) p  = k R  

1.2 .f(C--C)p = k R Z m ~  
1.3 .f(C-C),  = k R Z ~  ..... 
1.4 .f(C-C)p = kRN~ ~n 

2. Simple linear with constant 
2.1 .f(C--C)p = a + k R  

2.2 .f(C-C)p = a + kRZm~ 
2.3 .f(C--C)p = a + kRZ ..... 
2.4 .f(C-C)p = a + k R N ~  1/2 

3. Multiple linear 
3.2 .f(C-C)p = a + b R  + cZ~,~  
3.3 .f(C--C)p = a + b R  + cZ~ . . . .  

3.4 .f(C-C)p = a + b R  + cN~ ~ 

(b) Parameters used to assess regression results [~o is ~(C--C) as 
observed in crystal structures: ~ ,  is the value o f ' ~ ( C - C )  predicted 
by the regression equation] 

Item Description 

R~ 

r.m.s. (cr) 

N5o 
N ~  

N~o 

n5o 
n25 
nlo 
ASo 

AS2  

A pseudo R factor measuring the discrepancy between the .fo 
and .fp distributions where R,, = ZI.fo - .fp[/Z.fo 

The r.m.s, error, i . e . r .m . s . (~r )  = [Z(.fo - . fp)2/n]'a for n 
observations in the subset 

Percentage of entries with I.fo - .fpl -< 0.0050 A 
Percentage of entries with [.fo - .fp[ -< 0.0025 A 
Percentage of entries with [ . fo-  .fp[-< 0.0010 A 
Percentage of entries for which .fp is within 50% of To 
Percentage of entries for which .fp is within 25% of.fo 
Percentage of entries for which .fp is within 10% of To 
Percentage of AS flags that are predicted exactly by the 

regression equation 
Percentage of AS flags that are predicted exactly or within 

0.002 A of  the relevant AS flag limits of Table 2 

2 or 3. In particular, the regression intercept a is 
inconsistently predicted and adopts negative values 
of appreciable magnitude in type 3 equations. Again, 
there are no statistical reasons to choose the more 
complex regression forms over the orignal type 1 
formulation given by Cruickshank (1960), despite 
our assumption of a constant denominator in (2). 

Centrosymmetric and noncentrosymmetric structures 

We subsequently performed type 1 regressions on 
subdivisions of $220 that contained only centro- 
symmetric ($220c: Table 8c) or noncentrosymmetric 
($220nc; Table ~d) structures. Assessment criteria 
for both subdivisions show small but consistent 
improvements by comparison with the overall results 
of Table 8(b). Regressions of type 1.3, based on 
RZr.m.s.  , and type 1.4, based o n  RN~/2, give the best 
results for both $220c and $220nc and the regres- 
sions of type 1.4 appear marginally preferable on the 
basis of improvements in the assessment criteria. 

Cruickshank's (1960) equation (2) indicates that 
the proportionality constant k should differ by a 
factor of 21/2 for centrosymmetric and noncentro- 

symmetric structures, i.e. knc = 21/2kc. The ratio of 
knJkc from our regressions of type 1.4 in Tables 8(c) 
and (d) is 1.399, remarkably close to the expected 
value of 1.414. Values of k,~ (Table 8d) are consist- 
ently larger than values of kc (Table 8c) for regres- 
sions of types 1.1, 1.2 and 1.3 but their ratios (1.071, 
1.568, 1.307) are appreciably different from 21/2. 

Thus, we would recommend the use of regression 
equation (1.4c) or (1.4d), viz: 

~(C-C)p  = 0.01814RN~/2 = ~p ( l l a )  

or  

~(C-C)p  = 0.02537RN 1/2 = ~p, (1 lb) 

as the best predictive equations for centrosymmetric 
(l la) and noncentrosymmetric (llb) structures. In 
Fig. 6, we show (a) the composite numerical error 
distribution ( ~ o -  ~p) and (b) the composite percen- 
tage error distribution [ (~o -  ~p)l~o] calculated for 
subset $220 by use of (11). Each bar on the histo- 
grams is annotated with the mean value (~o) for the 
structures represented by that bar. The distribution 
of numerical errors is approximately normal with a 
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Table 8. Results of simple linear and multiple linear regressions for data set 2 

The  regression equat ions  are those o f  Table  7(a) and the parameters  used to assess the results are described in Table  7(b). 

R N  a 

(a) Overall  results 

1.1 
1.2 
1.3 
1.4 

2.1 0.00195 (13) 
2.2 0.00376 (5) 
2.3 -0.00125 (6) 
2.4 0.00138 (6) 

3.2 -0.00755 
3.3 -0.01284 
3.4 -0.00855 

b or k c R,, (%)  r.m.s. (or) (/k) Nso (%)  N25 (%)  N,o (%)  nso (%)  n25 (%)  n,o (%)  ASo (%)  AS2 (%)  

for  the 25 984 entries o f  subset S140 defined in Table  6(a) 

0.2070 (8) 50.8 0.0069 59.1 30.2 12.1 52.4 26.7 10.5 39.6 59.7 
0.00651 (2) 39.1 0.0058 73.2 47.5 21.4 67.0 35.3 14.0 59.0 76.9 
0.1350 (3) 35.5 0.0051 78.8 45.4 18.0 67.2 39.2 16.4 54.2 77.4 
0.02157 (6) 33.5 0.0051 79.3 54.8 24.4 75.1 44.0 18.4 61.1 83.2 

0.1707 (27) 51.1 0.0069 58.0 28.7 11.3 51.4 26.1 10.4 39.5 59.0 
0.00481 (3) 36.9 0.0053 76.9 45.5 17.6 65.6 37.1 15.0 54.1 77.2 
0.1482 (8) 34.2 0.0050 79.3 50.0 21.1 70.8 41.6 17.6 57.7 80.4 
0.01937 (11) 34.4 0.0051 79.6 50.0 20.2 70.0 40.9 17.4 57.0 80.7 

0.23906 0.00021 35.9 0.0051 75.6 47.4 20.5 68.9 39.2 16.4 58.6 77.0 
0.24010 0.00692 35.4 0.0051 76.4 48.7 21.2 70.1 40.3 16.9 58.5 78.4 
0.20464 0.00092 35.1 0.0051 77.0 49.0 21.5 70.6 40.5 17.3 59.1 78.7 

(b) Overall  results for  the 20 334 entries o f  subset $220 defined in Table  6(a) 

1.1 0.1755 (7) 42.4 0.0044 77.2 43.9 17.9 62.6 32.0 
1.2 0.00564 (2) 38.5 0.0042 80.6 52.3 21.8 66.4 34.2 
1.3 0.1169 (3) 29.9 0.0032 89.1 63.2 27.6 78.1 47.6 
1.4 0.01928 (5) 30.2 0.0034 87.3 64.7 31.7 82.5 49.4 

2.1 0.00465 (11) 0.0777 (2) 41.7 0.0042 79.9 42.2 16.3 61.6 32.3 
2.2 0.00437 (4) 0.00322 (2) 31.1 0.0033 89.3 59.6 23.8 74.4 43.6 
2.3 0.00079 (6) 0.1068 (9) 30.3 0.0032 89.4 61.7 26.0 76.2 46.3 
2.4 0.00262 (5) 0.01399 (11) 30.4 0.0032 89.3 61.8 25.1 75.8 45.2 

3.2 - 0.00276 0.15959 0.00013 30.3 0.0032 89.4 60.7 26.1 76.4 45.9 
3.3 -0.00627 0.15933 0.00457 30.7 0.0032 88.7 60.5 26.1 76.2 45.7 
3.4 -0.00336 0.13170 0.00062 30.3 0.0032 89.0 61.0 26.3 76.7 46.0 

13.1 40.1 68.9 
14.1 58.2 77.3 
20.3 57.1 85.6 
20.5 60.8 86.6 

13.1 40.3 61.2 
18.1 53.9 84.8 
19.6 55.1 84.9 
19.0 54.6 85.3 

19.3 56.8 84.2 
19.3 55.9 84.1 
19.5 56.4 84.7 

(c) Results for  the 15 170 cent rosymmetr ic  structures o f  subset $220 defined in Table  6(a) 

1.1 0.1725 (7) 44.0 0.0044 76.1 42.0 17.6 60.9 30.5 12.2 39.9 67.9 
1.2 0.00528 (2) 34.2 0.0037 84.9 58.9 25.7 73.8 39.6 16.6 59.1 82.4 
1.3 0.1109 (3) 29.0 0.0031 90.2 66.0 28.1 78.6 48.0 20.4 61.2 87.5 
1.4 0.01814 (5) 28.4 0.0032 89.0 67.9 34.0 84.8 52.4 21.8 62.3 88.7 

(d) Results for  the 5164 noncen t rosymmet r ic  structures o f  subset $220 defined in Table  6(a) 

1.1 0.1847 (12) 38.1 0.0041 81.6 46.8 18.4 66.6 35.3 14.0 41.2 71.7 
1.2 0.00828 (6) 40.7 0.0045 77.0 47.3 18.1 65.5 29.7 11.5 41.8 77.4 
1.3 0.1449 (7) 28.3 0.0031 90.1 62.9 25.9 80.0 48.7 20.5 57.4 85.8 
1.4 0.02537 (13) 29.0 0.0033 88.2 64.0 29.9 83.4 50.9 20.4 60.1 86.2 

(e) Results for  371 cent rosymmetr ic  s tructures f rom subset $220 (Table 6a) for  which N, and Np values are available in data  set 3 

1.4 0.0194 (4) 27.4 0.0028 92.2 74.4 38.5 84.9 55.0 20.0 69.3 90.6 
4.4 0.0539 (9) 25.0 0.0025 94.1 75.2 41.0 89.0 59.6 24.0 70.3 93.0 
5.4 0.923 (16) 27.2 0.0027 92.5 73.9 35.6 85.4 54.7 20.2 69.8 92.7 
6.4 0.854 (15) 26.9 0.0027 92.5 75.2 36.1 86.0 55.5 18.9 70.1 92.7 
7.4 0.0138 (3) 26.0 0.0028 92.5 74.1 46.1 90.8 58.0 27.5 70.1 92.7 
8.4 0.616 (13) 27.5 0.0032 90.6 75.2 43.9 89.8 58.2 26.2 70.2 92.5 
9.4 0.567 (13) 27.6 0.0032 90.0 75.5 43.7 89.0 57.7 28.3 69.8 92.7 

( f )  Results for  184 noncen t rosymmet r i c  structures f rom subset $220 (Table 6a) for  which Nr ands Np values are available in data  set 3 

1.4 0.0253 (7) 28.3 0.0030 92.4 64.7 31.0 83.7 48.9 20.1 67.5 91.9 
4.4 0.0592 (16) 27.8 0.0030 92.4 70.1 35.3 87.0 55.4 25.0 69.7 92.4 
5.4 1.083 (20) 20.8 0.0021 96.2 79.9 43.5 89.1 66.9 26.6 72.1 96.2 
6.4 0.823 (28) 24.9 0.0036 94.6 76.1 46.2 94.0 64.7 34.2 71.7 94.0 
7.4 0.0220 (6) 26.0 0.0028 94.0 71.2 37.0 88.0 53.8 23.9 69.9 92.9 
8.4 0.897 (19) 21.2 0.0024 95.6 80.4 47.3 92.4 65.8 32.6 70.8 94.5 
9.4 0.692 (24) 26.6 0.0036 91.9 73.9 45.1 94.6 59.2 27.2 70.5 94.0 

median at circa 0.001 A. Numerical errors are larger 
for larger Vo'S. The distribution of percentage errors 
is, however, heavily skewed towards negative errors 
and shows a steady increase of (Vo) from -0 .005  to 

N0.015/k and a median value of circa 20%. This is 
to be expected: a small numerical error in a small -~ 
value will, of course, generate a relatively large per- 
centage error. However, the negative skewing 
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towards lower ~o values implies that ~p > ~o in these 
cases and could be taken as an indication that some 
of the lower ~o values may be underestimated in the 
last-squares process, a problem discussed elsewhere 
by Taylor & Kennard (1986). 

Mean &otropic e.s.d.'s of C atoms 

The regression analysis has so far concentrated on 
the prediction of V(C-C) as the mean e.s.d, of a 
C-C bond in a structure of known elemental consti- 
tution and known R factor. This permits a direct link 
between the regression results and the existing AS 
flags in the CSD. Nevertheless, (11) may also be used 
to predict a mean isotropic e.s.d, for a C atom V(C) 
by use of (7). Thus, 

~ ( C )  = 0 . 0 1 8 1 4 R N 1 ' 2 / 2  m = 0 . 0 1 2 8 3 R N  1/3 

for centrosymmetric structures (12a) 
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: ~ , ~ o _ ~ - - ° ~ , ~  ~ R I  I ~ ~ - - ,  , "--~q--'~,~--r'~r.;,~" , o ~ -  

= _ o  . . . .  IIII1   4 0 0 . o o ~ o o o o . . o r - 1  I q~ . .~•~ .~ .  
~ o d , ~ , ~ , ~ ~  I I . . . . . . . . . . . . .  ! ! ! !  I I ! F-l--~m°~,o~o.0 

-0.010 -0.005 0.000 0.005 0.010 0.015 

Number of 
• entries 

2600- 
2400. 
2200- 
2000- 
1800- 

v(C--C)0 - ~(C-C)p 

(a) 

0 _ 0  

~d --_o ~- o 

,oc5 
1600- 
1400- 
1200. 
I000. 
800- 
600. 

400- 

200. 

e¢~ oo oo ¢.q tr~ . . , , - , o , ~ , , : , ~ , , - , ~ 1  I I I 
~ . .~  o ~ • 

I I I ' ~ . ~ 6 , 5 o r ' ~ - - I  I I I I I I 
~ ! ! ! ! ! 1 1  

-100.ooo -50.0o0 o.oo0 
[~(c-C)o - ~(c-c)p] 

~(C--C)o 

- o q  

t o 
c5~ 

q S  
o',, 

5 0 . 0 0 0  100.000 

x 100 

(b) 

F ig .  6. Distributions o f  (a) w ( C - C ) o  - w ( C - C ) ~ ,  the real numerical 
difference between observed and predicted ~ ( C - C )  values, and 
(b) the percentage difference 1 0 0 [ ~ ( C - C ) o -  ~ ( C - C ) v ] / ~ ( C - C ) o .  
Predicted values were calculated using (11) for subset $220 o f  
Table 6. Values o f  the mean (w(C-C)o)  are shown for each bar 
o f  each distribution. 

o r  

~(C) = 0.02537RN~/2/2 '/2 = 0.01794RN~c/2 

for noncentrosymmetric structures. (12b) 

However, since this is an empirical study, it may be 
more appropriate to use 

~(C) = 0.01814RN1/2/1.377 = O.O1317RN~/2 

for centrosymmetric structures (13a) 

o r  

~(C) = 0.02537RN~/2/1.377 = 0.01842RN~/2 

for noncentrosymmetric structures, (13b) 

where the denominator is the mean value of 
~(C-C)/~(C) determined from our calculations for 
both subsets S140 and $220 (see Table 6). The 
proximity of this ratio (1.377) to the value of 1.414 
expected for perfectly spherical error distributions, 
~(C), confirms that errors in C-atom positions are 
nearly isotropic over a very large sample of struc- 
tures, a fact noted by Taylor & Kennard (1986) in an 
analysis of atomic e.s.d.'s for a much smaller sample 
of 200 structures. 

The validity of (13) was checked by a regression 
analysis of the form ~(C) = kRN~/2 for the centro- 
symmetric and noncentrosymmetric subdivisions of 
$220. This yielded k = 0.01320 (4) and values of R~, 
and r.m.s. (tr) of 27.8% and 0.023 A for centro- 
symmetric structures. The k value for noncentro- 
symmetric structures was 0.01871 (10) with R~ and 
r.m.s. (o-) being 28.7% and 0.0026 A, respectively. 
Values of N5o, N25 and Nlo (Table 7) are 95.4, 79.9 
and 45.8% (94.6, 76.5 and 40.0%), respectively, for 
centrosymmetric (noncentrosymmetric) structures. 
The composite error distribution (Fig. 7) is near 
normal and the composite percentage error distribu- 
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Fig .  7. The distribution o f  real numerical differences ~ ( C ) o -  
w(C)p derived using 0 3 )  for subset $220.  Values o f  the mean 
(w(C)o) are shown for each bar o f  the distribution. 



FRANK H. ALLEN, JASON C. COLE AND JUDITH A. K. HOWARD 107 

tion (not shown) is almost identical in form to Fig. 
6(b). The ratio of the regression constants knc/kc is 
1.417, almost identical to the expected value of 1.414 
(Cruickshank, 1960). 

E.s.d.'s of  non-C atoms 

For any particular structure determination, the 
quantities R, Y and p in Cruickshank's (1960) original 
expression [(2)] are constants. Hence, within that 
structure, the mean isotropic e.s.d.'s tr(A) and tr(B) 
of two different elements A and B would be related 
according to 

,~2(A)/,~2(~) = NA /N~. (14) 

Simple manipulation using (3), in which the ZZi 2 
term is also a constant for a specific structure, then 
yields. 

o-(A)/o'(B) = Z~/ZA, (15) 

i.e. an inverse ratio of atomic numbers. Thus, we 
may express ~(E), the isotropic e.s.d, of the heaviest 
atom(s) E, in terms of the isotropic e.s.d, of a C 
atom, ~(C), 

~(E) = 6~(C)/Ze, (16) 

where ZE is the atomic number of E. 
The validity of (16) is explored in Table 9. Here, 

we have used values of ~(E), the mean e.s.d, of the 
heaviest (non-carbon) element (E) in any structure, 
and the corresponding ~(C) value, as calculated for 
each CSD entry in subsets S140 and $220 of Table 6. 
These 'observed' values were then averaged over 
ranges of Ze, the atomic number of the heaviest 
element, and the mean atomic number, (Ze), was 
calculated for each range. This binning procedure 
generates seven 'representative structures', each with 
a unique (~(C)) and (ZE) value that can be used in 
(16) to obtain (-Y(E)p), a predicted value for the e.s.d. 
of an element of atomic number Ze. Ideally, (-ff(E)p) 
should equal (~(E)o) and their graph should be a 
straight line passing through the origin and having a 
gradient K [=(-Y(E)o)/(-Y(E)p)] of unity. 

The results in Table 9 show values of K that are 
close to unity for the lowest ZE ranges but that tend 
towards lower values (circa 0.75-0.80) when heavier 
atoms are present. This is entirely reasonable since 
our estimate of a unitary value for K involves the 
term Z # Z c  arising from our estimate [(4)] of the NA 
term in Cruickshank's (1960) original equation (2). 
However, the correct expression for NA [(3)] involves 
scattering factors (fa) at the Y appropriate for each 
structure. It has been pointed out to us 
(Cruickshank, 1993) that, since scattering factors for 
heavy atoms drop off more slowly than for carbon 
(and heavy atoms usually have smaller displacement 
parameters than C atoms in the same structure), then 

Table 9. Values of  (-~(E))o and (~(C))o, the observed 
isotropic e.s.d.'s of a non-C atom (E) and a C atom 
(C) in ]k, averaged over ranges of  Ze, the atomic 

number of E 

Nent is the number of  entries in each range and (ZE) is the mean 
value for the range. The quantity -~(E), is calculated using 
(16) with the appropriate (Ze) as denominator. K is the ratio 
(~(E))o/~(E)p. Calculations were carried out  for subsets S140 and 
$220 of  Table 6. 

ZE range Ne.t 

(a) Subset S140 

7-9 7692 
10-19 4586 
20-29 3795 
30-39 1622 
40-49 2958 
50-69 1350 
-> 70 2979 

(b) Subset $220 

7-9 6051 
10-19 3786 
20-29 3088 
30-39 1243 
40--49 2425 
50-69 1019 
>- 70 1856 

0.00332 0.00464 7.88 0 .00353 0.941 
0.00190 0.00542 16.00 0 .00203 0.936 
0.00117 0.00785 26.34 0.00179 0.654 
0.00126 0.00948 3 4 . 0 4  0 .00167 0.755 
0.00088 0.00897 4 3 . 6 7  0 .00123 0.715 
0.00088 0.01050 5 3 . 4 9  0 .00118 0.746 
0.00077 0.01338 7 7 . 0 4  0 .00104 0.740 

0.00306 0.00427 7.89 0 .00325 0.942 
0.00143 0.00472 1 6 . 0 2  0 .00177 0.808 
0.00098 0.00623 2 6 . 3 3  0 .00142 0.690 
0.00099 0.00727 3 4 . 0 1  0 .00128 0.773 
0.00076 0.00710 4 3 . 6 3  0 .00098 0.776 
0.00072 0.00787 5 3 . 2 0  0.00089 0.809 
0.00063 0.00946 7 6 . 7 9  0.00074 0.851 

our estimate of N, [from (4)] will be somewhat 
smaller than that given by (3). Further, it is the ratio 
fe/f~ that should be involved in generating a unitary 
value for K in Table 9 and this, then, is likely to be 
greater than the ratio Ze/Zc  used by us. This in turn 
leads to K values that are systematically less than 
unity for the higher Ze ranges. 

In the event, the plots of (-ff(E)o) versus (-ff(E)p) for 
data sets S140 and $220 (Fig. 8) are almost collinear 
and pass very close to the origin. In view of the 
results of Table 9 and Fig. 8, we performed two 
further type 1 regressions using data set $220 with 
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0.002 

0.001 

0.001 0.002 0.003 0.004 

(v(~,) 

Fig. 8. Plot of  the binned mean (~(E)o) versus (~(E)p) for subsets 
S140 (denoted by circles) and $220 (denoted by crosses). 
Binning procedures are described in the text. 
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~(E) as the dependent variable and with the 
independent variable as (i) ~(C)/ZE [from (16)] and 
(ii) RN~c/Z/Ze [on the basis of (13)]. For (i), we do not 
need to form centrosymmetric and noncentrosymme- 
tric divisions of the data set and, in the fight of the 
discussion above, we would expect the slope of the 
simple regression line to be less than its 'ideal' value 
o f  6.0. For (ii), subdivision is essential and we might 
expect [(13)] the slopes of the regression lines to 
approach (but be less than) 6 x 0.01317 = 0.079 for 
centrosymmetric structures and 6 x 0.01842 = 0.1105 
for noncentrosymmetric structures. Regression 
results for $220 with an imposed zero intercept gave 

or  

(i) ~(E) = 5.203~(C)/Ze (17) 

(ii) ~(E) = O.0678RN~c/2/Ze 

for centrosymmetric structures (18a) 

-~(E) = O.IO06RN~/2/Z E 

for noncentrosymmetric structures. (18b) 

Values of R,~ and r.m.s. (o-) from (17) were 28.7% 
and 0.00088 A and from !18a) [(18b)] they were 
40.8% and 0.0010/~ [34.9 Yo and 0.0014/~]. The 
kn¢/kc ratio here is 1.484. 

These regressions confirm the validity of (16) and 
provide useful predictions of ~(E) when ~(C) is 
already known [(17)] or, more valuably with respect 
to CSD analyses, when only the R factor and atomic 
constitution of a structure are known [(18)]. We note, 
however, that the -Y(E) values used here refer only to 
the heaviest element in any structure. Nevertheless, an 
expression having the form of (18) is general and we 
explore this generality for all non-H atoms in subsets 
of the CSD in paper II (Allen, Cole & Howard, 
1995). 

values < 4 and _> 12, respectively. For each bin, we 
tabulate the mean values (Nr/Np), (~(C--C)), (R), 
(Zmax) and (RNlc/2). 

The overall results for all 817 entries (Table 10a) 
show that (~(C-C)) decreases quite rapidly over the 
first five bins, despite the fact that (Zmax) (and hence 
(RN2/2)) increases steadily as (Nr/Np) increases, but 
(R) is essentially constant. Obviously, those struc- 
tures that contain a heavier element tend to diffract 
well and exhibit higher values of Nr/Np. Correlation 
coefficients linking NflNp with Zmax are 0.346 for 
subset S140 and 0.374 for subset $220. Nevertheless, 
the increasing Nr/Np ratio, particularly in the lower 
half of the complete range, more than compensates 
for the increasing (Zmax) SO that (~(C-C)) actually 
falls rather than rising with (Zmax). 

In order to examine the real effect of increasing 
NflNp, we have normalized the mean (~(C-C)) 
values to the (RN 1/2) value of the first bin, using the 
already established proportionality between ~(C-C) 
and RNIc/2; thus, 

(~(C-C)), = (-Y(C-C))(RNI/2),/(RN)/2), (19) 

where (~(C-C)), is the normalized mean value of a 
(~(C-C)) associated with a specific (RN2/2) and 
(RN1/Z)n is taken here as 0.31955. The downward 
trend in (~(C-C)), (Table 10a, Fig. 9) now extends 
to N~/Np = 9-10 with the most dramatic section of 
the curve occurring for Nr/Np < 6-7. These results 
confirm the typical experiential knowledge of small- 
molecule crystallographers. 

Tables 10(b) and (c) divide the overall Table 10(a) 
into two subgroups: (b) 'organic' structures having 
Zmax--< 18 and (c) 'metallo-organic' structure having 
Zmax > 18. In Table 10(b), the trends in (~(C-C)) 
and (~(C-C)), are similar and are directly compa- 
rable with those for the normalized (~(C-C)), for the 

Analysis of data set 3 

The 817 entries of data set 3 represent a small 
subset of the CSD for which some information items 
concerning the structure-refinement process, in the 
form of Nr (number of reflections) and Np (number 
of refined parameters), have been manually edited 
into the work file for this project. Despite the fact 
that the quantity p = N r -  Np occurs in the denomi- 
nator of the expression used to calculate parameter 
e.s.d.'s following least-squares refinement and also 
occurs in the denominator of (2) (Cruickshank, 
1960), crystaUographers habitually use the ratio 
N~/Np as a rapid guide to the likely 'quality' of a 
given structure. Hence, for crystallographic interest, 
we begin this section with a brief comparative analy- 
sis of structures in terms of this NflNp ratio. In Table 
10, we have divided the full N~/Np range into eight 
unitary bins, together with two extra bins covering 

15.0- 
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Fig. 9. Plot of binned values of (~(C-C)) (denoted by crosses) and 
of (~(C-C)), (denoted by filled circles) versus (N,/Np) for data 
set 3. Binning and normalization procedures are described in the 
text. 
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Table 10. Analysis of structural precision for ranges of Nr/Np (see Table 3 for definitions) 

F o r  each range,  mean  values are cited for  (Nr/Np), (-YC-C)), (R), (Zmax) and  (RN~/2), where pa rame te r s  are defined in Tab le  3. N~., is the 
n u m b e r  o f  C S D  entries in each range and  the normal ized  quan t i ty  ( ~ ( C - C ) ) ,  is described in the text. 

Nr/Np range (N,/Np) 
(a) Fo r  all entries in da ta  set 3 

(~(C--C)) (R) (Zmax) (RN 1/2) Nen t (~(C-C)) n 

0-4 3.16 0.01076 0.0488 10.29 0.319 31 0.01076 
4-5 4.58 0.00943 0.0497 14. t5 0.331 77 0.00910 
5-6 5.52 0.00893 0.0487 16.13 0.345 105 0.00827 
6-7 6.50 0.00854 0.0480 20.30 0.373 103 0.00730 
7-8 7.53 0.00836 0.0488 22.50 0.399 103 0.00669 
8-9 8.56 0.00866 0.0477 28.48 0.438 98 0.00631 
9-10 9.47 0.00811 0.0464 28.72 0.414 76 0.00625 

10-11 10.52 0.00784 0.0430 32.71 0.397 63 0.00630 
11-12 11.34 0.00925 0.0440 36.30 0.459 53 0.00644 

12 15.28 0.00989 0.0438 45.68 0.541 108 0.00584 

(b) F o r  entries with Zmax ----- 18 

0-4 3.15 0.01066 0.0487 8.89 0.294 29 0.01155 
4-5 4.56 0.00829 0.0499 10.12 0.291 64 0.00910 
5-6 5.49 0.00691 0.0489 9.94 0.287 79 0.00768 
6-7 6.48 0.00602 0.0492 11.01 0.300 69 0.00641 
7-8 7.56 0.00516 0.0510 10.68 0.295 66 0.00557 
8-9 8.59 0.00479 0.0488 11.94 0.291 50 0.00526 
9-10 9.42 0.00440 0.0481 12.57 0.284 35 0.00495 

I0-11 10.48 0.00407 0.0463 13.15 0.267 26 0.00486 
11-12 11.37 0.00435 0.0484 11.17 0.277 17 0.00501 

12 14.22 0.00501 0.0509 12.64 0.300 25 0.00533 

(C) F o r  entries with Zm~x > 18 

0-4 3.32 0.01216 0.0500 30.50 0.675 2 0.00575 
4-5 4.68 0.01504 0.0486 34.00 0.528 13 0.00910 
5-6 5.61 0.01507 0.0481 34.92 0.520 26 0.00925 
6-7 6.54 0.01364 0.0457 39.14 0.522 34 0.00834 
7-8 7.49 0.01408 0.0448 43.59 0.583 37 0.00771 
8-9 8.53 0.01268 0.0465 45.72 0.592 48 0.00684 
9-10 9.51 0.01129 0.0450 42.51 0.525 41 0.00686 

10-11 10.55 0.01048 0.0406 46.45 0.488 37 0.00686 
11-12 11.33 0.01157 0.0419 48.16 0.545 36 0.00678 

12 15.60 0.01135 0.0417 55.63 0.613 83 0.00591 

complete data set (Table 10a), since (Zmax) and 
(RN~/2) now show a very small range. By contrast, 
the heavy-atom structures of Table 10(c) show an 
approximate, and rather misleading, constancy of 
(~(C--C)) over the Nr/N 1, range. The true effects cf 
increasing this ratio are only revealed in the 
normalized (~(C-C)), values. A comparison of the 
Nent values of Tables 10(a) and (c) show that only 
26.7% of entries having Nr/Np<_ 7 are metallo- 
organic, but 62.8% of entries with Nr/Np > 7 are of 
this class, despite the fact that less than half (43.7%) 
of entries in the total data set have Zmax > 18. The 
imbalance is clear, for reasons already stated. 

For the regression experiments on data set 3, we 
employ the general form of (2) and test its predictive 
ability when (NJNp) m, Nr m or (N~-Np) 1/2 is 
included as a denominator. Further, a method has 
been suggested to us (Cruickshank, 1993) for 
obtaining a simple estimate of g (the r.m.s, reciprocal 
radius) from the unit-cell volume, the space group 
and N~. This derivation is included as an Appendix 

to this paper. All regressions were based on 555 
entries from subset $220 (Table 6a) for which Nr and 
Np values were available in data set 3. Centrosymme- 
tric structures (371) and noncentrosymmetric struc- 
tures (184) were treated separately. Seven different 
variations of (2) were used, denoted as regression 
types 1.4, 4.4-9.4 in Tables 8(e) and ( f ) ,  viz: 

type 1.4 ~(C-C) = kRN~/2 (20) 

type 4.4 ~(C-C) = kRN~/2/(Nr/Np) ~/z (21) 

type 5.4 ~ ( C - C ) =  kRN2/Z/(Nr) '/2 (22) 

type 6.4 (23) 

type 7.4 (24) 

type 8.4 (25) 

type 9.4 (26) 

The type 1.4 regressions [(20)] that were used to 
analyse the larger data set 2 are included here to 
provide a benchmark against which to compare the 

= k NU/(Nr- N,,) 
~(C-C) = kRN2/2/g 

~(C---C) = kRN)/2/g(N,) '/2 

~(C-C) = kRN~cn/g(g~- gp) xn. 
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predictive abilities of (21)-(26). Equations (23), (24) 
and (26) represent progressive stages of the 
Cruickshank (1960) formulation. 

Regression results for centrosymmetric and non- 
centrosymmetric subsets are given in Tables 8(e) and 
( f ) ,  respectively. The 'benchmark' results from the 
type 1.4 regressions yield similar values of k, R~ and 
r.m.s. (o-) to those given by the large data set 2 and a 
ratio of k,c/kc of 1.304 (1.399 for data set 2). Results 
from the other six regressions are inconsistent 
although, in general, inclusion of some function 
involving Nr appears to yield small improvements in 
the assessment criteria. Surprisingly, (21) with 
(Nr/Np) 1/2 as denominator generates the best overall 
set of criteria for centrosymmetric structures, 
although the best overall values of nso, n25 and na0 are 
generated by (26), which has the functional form of 
(2). For the noncentrosymmetric structures, the best 
overall criteria are given by (22) and (25), which both 
involve (Nr) ~/2 in the denominator. We also note that 
the ratio k .Jkc for  (21), (22), (23), (24), (25) and (26) 
at 1.098, 1.173, 0.964, 1.594, 1.456 and 1.220 shows 
wide variations one with another and from the 
expected value of 1.414. 

We are left, then, with an apparent anomaly: why 
does our best available approximation to the com- 
plete Cruickshank (1960) equation [(26) above], 
involving four variable parameters, give such a small 
improvement in predictive power by comparison 
with the much simpler equation [(21) above] which 
involves only two parameters? Firstly, we accept that 
the numbers of structures used in the regressions of 
Tables 8(e) and ( f )  are rather small. Secondly, g as 
given in the Appendix is only an estimate and, for 
this study, we have not modified Nc so that it 
conforms to (3). 

Despite these caveats, we have briefly explored the 
statistics of the g and ( N r -  Np) 1/2 distributions and 
also the intercorrelations between g and functions 
involving Nr and Np with ~(C-C), Nlc/2 and R. The g 
distribution is almost normal and ranges from 0.48 
to 1.37 A-1. However, variation in g is small, with 
88% of values in the range 0.6-1.0 A -~ and 58% 
between 0.7 and 0.9 ]k-1. The Nr - N p  range is much 
broader: from 241 to 9896, corresponding to (Nr -  
Np) ~/2 in the range 15.5-99.5, although the effective 
range is rather smaller at circa 26.0-75.0. 

It is the correlation results of Table 11 that are, 
perhaps, the most revealing. The Ci,j. values for i = R 
are all very low, indicating that R is essentially 
independent of g and f(Nr,Np). However, for 
i = N l/z, the Ci,j are appreciable with values for j = 
N~r/2 and (Nr - Np) ~/2 being as high as 0.650. This, of 
course, is a confirmation of the deductions made 
from Table 10: that structures having increasing 
proportions of heavier atoms are likely to generate 
higher numbers of observed reflections. The expected 

Table 11. Correlation coefficients Cij derived from the 
555 entries of  subset $220 for which Nr and Np values 

were available in data set 3 

N a m e s  o f  d a t a  i t e m s  a r e  d e f i n e d  in  t h e  t e x t  o r  in  T a b l e  3. 

I t e m  i 

I t e m  j ~ ( C - C )  R N~/2 

Nr/Np - 0.141 - 0.059 0.273 
(N,/Np) . . . .  0.147 - 0.055 0.270 
N, 0.102 - 0.031 0.364 
N, ~n 0.108 - 0.054 0.650 
(N, - Np) t'2 0.086 - 0.060 0.644 

- 0.334 - 0.114 - 0.219 
g(N, - Np) . . . .  0.079 - 0.098 0.437 

appreciable inverse correlations of ~(C-C) with 
f ( N r -  Np) are not observed and, indeed, three of 
these Cij show small positive values. Only 
C[~(C-C),g] approaches the behaviour that might 
have been expected. It would appear that the very 
small range of g and the nonindependence of (Nr -  
Np) ~/2 for this data set are contributory factors to the 
apparently anomalous results of Tables 8(e) and (f) .  

Concluding remarks 

This study of structural precision has, of necessity, 
been restricted by the information content of the 
CSD, particularly in relation to experimental details 
of the structure-determination process. Nevertheless, 
it has proved possible to generate the empirical 
predictive equations that quantify -Y(C-C), ~(C) and 
~(E) in terms of the crystallographic R factor and 
the atomic constitution of the structure under study, 
using the work of Cruickshank (1960) as the theo- 
retical basis. Specifically, we recommend the use of 
(lla) and (llb) [for ~(C-C)p], (13a) and (13b) [for 
~(C)p] and (18a) and (18b) [for ~(E)p], where the a 
and b forms should be used for centrosymmetric and 
noncentrosymmetric structures, respectively. These 
predictions are shown to provide an acceptable esti- 
mate of the AS flag for N 86% of the 13 000 struc- 
tures that lack that information in the CSD. It also 
appears possible to predict the real -~(C-C) and ~(C) 
values to within _+0.005 A in a similar proportion 
(87 and 95%) of those circa 40000 structures that 
currently lack e.s.d, information in the CSD, and to 
know that these estimates are within _+ 0.0025 A in 
65% and 78% of cases. 

There remains, of course, the problem of those 
13-14% of structures for which the predicted values 
are less valid. In the absence of further experimental 
details (through which we might, in any case, have 
generated better predictive equations), it remains 
difficult to identify exactly which structures might be 
so affected. Here, we would have to rely on the 
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currently encoded AS flags, where available, to aid 
this identification. We would hope that, through a 
careful analysis of AS flags and predicted ~(C-C) 
values, it would be possible to incorporate improved 
precision indicators within the CSD that have known 
reliability for some 75-80% of database content. 
Such indicators should, for example, form a suitable 
basis for the generation of semi-weighted mean 
values of geometric parameters in the manner sug- 
gested by Taylor & Kennard (1983). 

This study has also confirmed a number of pieces 
of experiential crystallographic knowledge, e.g. (i) 
that, within a given structure, the e.s.d.'s of different 
elements are approximately related by the inverse 
ratio of their atomic numbers, (ii) that Nr/Np ratios 
below circa 6.0 lead to rapid increases in atomic 
e.s.d.'s and (iii) that structures containing heavier 
elements are more likely to generate diffraction data 
for which N r / N  p ~ 6.0. 

Finally, we note that the predictive equations 
derived in this work have positive implications for 
CSD data-processing activities. Specifically, the pre- 
dictions can be compared with values calculated 
from input information so as to detect gross errors in 
the initial keyboarding operations and/or in the 
published e.s.d, data contained in journals or in 
deposition documents. 

We are greatly indebted to Professor Durward 
Cruickshank FRS for his detailed comments and 
discussion of early versions of this manuscript. We 
thank Drs Olga Kennard FRS, Robin Taylor and 
Michael Doyle for their interest in this work and for 
helpful suggestions. The Science and Engineering 
Research Council (UK) is thanked for financial sup- 
port to JCC. 

APPENDIX 

We are indebted to Cruickshank (1993) for suggest- 
ing this simple method of estimating Y from quanti- 
ties available in the work file for data set 3. In this 
derivation, Vc is the unit-cell volume, Vc* (= 1/Vc) is 
the reciprocal-cell volume, Smax (=2s inO/A)  is the 
radius of the sphere of observations in reciprocal 
space, Vs* is the volume of this sphere, Nr is the 
number of reflections and m* is multiplicity of a 
general reflection. If we suppose that there are no 
unobserved reflections within the limiting sphere and 
we ignore the effect of principal zones where reflec- 
tion multiplicities may be less than m*, then we can 

estimate Sma x via 

N,. = Vs*/m* Vc* = (Vc/m*)(47rS3max/3), (27) 

Smax = (3m*Nr/4'rrVc) 1/3. (28) 

For a solid sphere, we may calculate the mean square 
radius s 2 via 

Smax STx 
g2 = f s z 4"n's2ds/ 4 'rrs 2 ds, (29) 

0 / 0 

£2= 1/5(4,trSSmax)/[1/3(4,n.S3m,x) ] = 3/5(S2max). (30) 

The r.m.s, reciprocal radius g is then given by 

~-= (ff2)1/2 = (3/5)l/2Smax" (31) 

Hence, we can estimate ~ as 

Y = (3/5)l/2(3m*Nr/4"rr Vc) I/3. (32) 
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